

# MOOG-PD64

# **PROGRAMADOR DE PARISON**

# MANUAL DO USUÁRIO



INDICE

| SEÇÃO                                          |                          | PÁGINA  |
|------------------------------------------------|--------------------------|---------|
| 1. Apresentação                                |                          | 04      |
| 2. Descrição geral do Programador de Parison   |                          | 04 a 06 |
| 2.1. Funcionamento                             |                          | 04      |
| 2.2. Controle de Precisão                      |                          | 05      |
| 2.3. Programa                                  |                          | 05      |
| 2.4. Perfil                                    |                          | 05      |
| 2.5. Escala                                    |                          | 05      |
| 2.6. Peso                                      |                          | 05      |
| 2.8. Interação entre Perfil, Escala e Peso     |                          | 05      |
| 3. Painel de Operação e teclas de funções.     |                          | 07 e 08 |
| 4. Tela Inicial ( MENU )                       |                          | 09      |
| 4.1 Cadastro das senhas (Operador e Supervis   | or), Data e Hora         | 10 a 11 |
| 5. Tela de Configuração                        |                          | 11      |
| 5.1 Procedimento para Calibração dos cilindros | de programação, 1 até 8. | 12 a 13 |
| 6. Tela de Arquivo de Programas                |                          | 14      |
| 6.1. Tela de Programas Salvos                  |                          | 15      |
| 6.2. Procedimento para SALVAR um programa      |                          | 16      |
| 6.3. Procedimento para CARREGAR um progra      | ima                      | 16      |
| 6.4. Procedimento para APAGAR um programa      |                          | 16      |
| 7. Telas de Monitoramento de Sinais            |                          |         |
| 7.1. Entradas Digitais                         |                          | 17      |
| 7.2. Saídas Digitais                           |                          | 18      |
| 7.3. Entradas/Saídas Analógicas (Servoatuador  | res 1 ao 4)              | 19      |
| 8. Telas de Produção                           |                          |         |
| 8.1. Tempo de Ciclo e Contador de Ciclos       |                          | 20      |
| 8.2. Contador de Peças                         |                          | 21      |
| 8.3. Dados de Produção 1                       |                          | 22      |
| 8.4. Dados de Produção 2                       |                          | 23      |



| 9. Tela de Programa            | 24      |
|--------------------------------|---------|
| 12. Tela de Edição do Programa | 25      |
| 13. Tela de Alarmes            | 26      |
| 14. Instalação                 | 27      |
| 15.Configuração do Rack        | 28      |
| 16. Conexões elétricas         | 29 a 32 |



# 1. APRESENTAÇÃO

O programador de parison MOOG PD64 foi desenvolvido para ser utilizado em máquinas de sopro por extrusão contínua. Nesta aplicação em específico, deve ser utilizado com transdutores de posição DCDT e servoatuadores com eletrônica integrada MOOG. De fácil operação, o programador PD64 proporciona ao usuário, a otimização da espessura da parede do parison, com as seguintes vantagens:

- Economia de resina – resultado da distribuição homogênea de material.

- **Aumento de produtividade** – com a redução de material, o tempo de resfriamento será menor, reduzindo o tempo de ciclo da máquina.

- **Melhoria na qualidade** – o produto resulta mais leve e resistente, com diminuição na quantidade de peças rejeitadas, resultado da distribuição do material, feita com alta repetitibilidade garantida pelo servo-controle em malha fechada.

# 2. DESCRIÇÃO GERAL DO PROGRAMADOR DE PARISON

### 2.1 Funcionamento

A função principal de um programador de Parison é controlar a espessura da parede da mangueira de material plástico em alta temperatura( Parison ) durante o processo de extrusão, segundo um perfil previamente programado (Programa) e Espessura de Retorno, conforme mostra a figura abaixo:





#### 2.2) Controle de Precisão

Para obter um controle **preciso** da espessura do parison, o programador controla a abertura do cabeçote através de um servo-controle de posição em **malha fechada**, conforme mostra o diagrama de blocos a seguir:



#### 2.3 Programa

É composto pelos controles de Escala, Perfil, Peso, Espessura de Retorno. Os valores podem variar entre 0 a 100%. Note que a soma dos dois valores não deve ultrapassar 100%. Neste caso, se tivermos, por exemplo, valores préajustados de ESCALA=80% e PESO=20%, as seguintes situações poderão ocorrer:

a) Se alterarmos o valor de ESCALA para, por exemplo, 81%, considerando que o ajuste de PESO está em 20%, o programador não aceitará a modificação e retornará o valor de ESCALA para 80%.

b) Se alterarmos, o valor de PESO para 21%, considerando que o ajuste de ESCALA está em 80%, o programador reajustará o valor de ESCALA para 79%, de maneira que a soma seja 100%.

c) Os ajustes de ESCALA e PESO podem assumir quaisquer valores, desde que a soma dos dois não ultrapasse 100%.

#### 2.4 Perfil

O perfil editado representa graficamente o quanto a ferramenta abrir/fechar para atender a necessidade de distribuição de material para cada peça. O perfil varia em função do formato da peça a ser produzida sendo que, o ponto 1 representa a parte **inferior** da peça e o ponto 64 representa a parte **superior** da peça. A graduação de 0 a 100% representa o curso total de abertura da ferramenta, de zero ao máximo (o perfil editado é condicionado pelo ajuste de Escala).

#### 2.5) Escala.

Este controle é um fator, de 0 a 100%, que aplicado ao perfil editado, determina quanto do perfil editado será enviado, como comando, para a ferramenta.

Por exemplo, se introduzirmos o valor ZERO em ESCALA, o programa irá "desaparecer".

Se, no entanto, em seguida, introduzirmos o valor diferente de zero em ESCALA, o programa reaparecerá, na forma concebida da última vez, e será mostrada proporcionalmente ao valor de ESCALA, na tela do programador.

#### 2.6) Peso

Este controle, determina a abertura mínima da ferramenta durante a fase da INJEÇÃO. Possui uma faixa de ajuste de 0 a 100%, mas depende do valor ajustado no campo de ESCALA. Lembre que a soma dos valores de ESCALA + PESO deve ser menor ou igual a 100%.

#### 2.7) Espessura de Retorno

Este controle, determina a abertura mínima da ferramenta durante a fase de extrusão. Possui uma faixa de ajuste de 0 a 100%.



#### 2.8) Interação entre os Controles de Escala, Perfil e Peso

A abertura da ferramenta é determinada ponto a ponto da seguinte forma:

Abertura, da ferramenta, ponto Z(%) = (Valor do programa, no ponto Z) X ESCALA(%) + PESO

Ex : Se o ponto 20 estiver ajustado em 80%, ESCALA = 70% e PESO = 8% teremos, no momento em que o ponto 20 estiver ativado, **64 %** de abertura da ferramenta. Ou seja:

O mesmo sucede com os outros pontos do perfil. O gráfico abaixo mostra alguns exemplos da abertura da ferramenta, para o perfil de ESCALA = 70% e PESO = 30%:

PONTO 1: 100% DE ABERTURA PONTO 32: 72% DE ABERTURA PONTO 64: 65% DE ABERTURA

### Abertura da Ferramenta %



Abertura da Ferramenta %



# 3. PAINEL DE OPERAÇÃO E TECLAS DE FUNÇÕES



PWR – Led que indica a presença da Alimentação DC no terminal



2ndF – Led que indica que a segunda função está ativa



Tecla que habilita a segunda função



F1 até F16 ou F17 até F32 (quando segunda função está ativa), usadas para navegação das telas







Teclas de Navegação. Muda o cursor entre campos na tela.



Teclas numéricas 0 a 9, para inserir valores numéricos. No caso de seletoras 0=NÃO e 1=SIM

DEL

Tecla DEL. Apaga um valor numérico ou lógico existente na tela do equipamento. Necessita de confirmação através da tecla ENTER



Tecla ENTER. Confirma os dados alterados/inseridos nos diversos que estão presentes nas telas do equipamento



# 4. TELA INICIAL (MENU)



SENHA Senha para acesso aos parâmetros do Programador

# **NIVEL DE ACESSO** Indicação do Nível de Acesso aos Parâmetros do Torno (Bloqueado, Nível Operador, Nível Calibração).

- **SENHA** Link para Tela de Senha(tecla só aparece quando o equipamento está com a senha adequada vide abaixo...).
- **CONF.** Link para Tela de Configuração.
  - AUX. Link para Tela de Menu Auxiliar
- PRG1 Link para a Tela de Programador 1
- PRG2 Link para a Tela de Programador 2
- PRG3 Link para a Tela de Programador 3
- PRG4 Link para a Tela do Programador 4



## 4.1 Cadastro das senhas (Operador e Supervisor), Data e Hora

Para ter acesso aos parâmetros do programador, é necessário cadastrar as senhas de Operação e Supervisão. Para tanto, deve-se digitar MOOG, no campo SENHA, conforme orientação abaixo:

- 1) Apertar a tecla de segunda Função (2ndF),
- 2) Pressionar a tecla 5 por duas vezes (M),
- 3) Desabilitar a segunda Função (2ndF),
- 4) Mover o cursor uma posição para direita,
- 5) Habilitar novamente a segunda Função (2ndF),
- 6) Pressionar a tecla 5 por quatro vezes (O),
- 7) Desabilitar a segunda Função (2ndF),
- 8) Mover o cursor mais uma posição para direita,
- 9) Habilitar novamente a segunda Função (2ndF),
- 10) Pressionar a tecla 5 por quatro vezes (O),
- 11) Desabilitar a segunda Função (2ndF),
- 12) Mover o cursor mais uma posição para direita,
- 13) Habilitar novamente a segunda Função (2ndF),
- 14) Pressionar a tecla 3 por duas vezes (G),
- 15) Desabilitar a segunda Função (2ndF),
- 16) Confirmar o procedimento através da tela ENTER
- 17) Neste momento, as indicações L2, "Senha/Hora" e a tecla SENHA aparecerão na tela
- 18) Pressionar a tecla SENHA(F1) para ter acesso à página onde serão inseridas as senhas



19) Inserir as senhas desejadas para os níveis de SUPERVISOR.



- 20) Confirmar o procedimento através da tela ENTER
- 21) Inserir as senhas desejadas para os níveis de OPERADOR.
- 22) Confirmar o procedimento através da tela ENTER
- 23) Pressionar a tecla SALVA(F7) para memorizar as senhas
- 24) Pode-se neste momento, ajustar o calendário e horário do equipamento. Para tanto, deve-se inserir a DATA e HORA, no formato indicado no passo 18.
- 25) Confirmar o procedimento através da tela ENTER
- 26) Pressionar a tecla AJUSTA(F1) para ajustar a DATA e HORA do equipamento
- 27) Retornar à Tela de Menu e inserir uma das senhas cadastradas (Supervisor ou Operador),

# 5. TELA DE CONFIGURAÇÃO

Para ter acesso à esta página, deve-se estar com a senha de SUPERVISÃO



| Tempo Manual            | Seletora que habilita o tempo de contagem de ciclo manual                                                                               |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Simulador de Ciclo      | Seletora que habilita o modo Auto-Run do programador                                                                                    |
| Perfis Individuais      | Seletora que habilita a execução de mais de um perfil                                                                                   |
| Calibr. Automat.        | Seletora que habilita o modo de calibração automático da(s) ferramenta(s)                                                               |
| Tempo de<br>Programação | Determina o tempo com que o perfil será executado                                                                                       |
| Incr/Decr Pto.          | Campo programável que determina o valor com o qual, o ponto de programa que está sendo editado, será acrescido ou diminuído.            |
| Cmdo p/ Ajuste          | Campo programável que determina o valor que será aplicado na(s) servoválvula(s), durante o<br>procedimento de calibração da ferramenta. |



| SENHA | Link para Tela de senha                            |
|-------|----------------------------------------------------|
| MENU  | Link para Tela de Menu (F8).                       |
| CAL1  | Link para Tela de Calibração da ferramenta 1(F9).  |
| CAL2  | Link para Tela de Calibração da ferramenta 2(F10). |
| CAL3  | Link para Tela de Calibração da ferramenta 3(F11). |
| CAL4  | Link para Tela de Calibração da ferramenta 4(F12). |

# 5.1 Procedimento para Calibração dos cilindros de programação, 1 até 4.

- Certificar-se que o acoplamento mecânico entre cilindro de programação e a ferramenta está ajustado de forma adequada ou seja, mesmo com o cilindro na posição de ferramenta fechada, esta deverá estar ABERTA. É uma segurança mecânica.
- 2) Acessar a Tela de Menu e inserir a senha de SUPERVISÃO
- 3) Verifique, no campo NIVEL DE ACESSO, o texto indicativo: Supervisor.



4) Acessar a Tela de CONFIGURAÇÃO, através da tecla CONF

TemPo\_Manual...XXX Simulador\_CicloXXX Perfis\_Individ.XXX Calibr.Automat.XXX SaNNE CHEI CHEZ CHEZ CHEZ

- 5) Na Tela de CONFIGURAÇÃO, selecionar qual modo de calibração desejado, AUTOMÁTICO ou MANUAL, através da seletora **Calibr. Automat.**.
- 6) Na Tela de CONFIGURAÇÃO, inserir um valor para o campo Cmdo p/ Ajuste , por exemplo 20%.
- O procedimento de calibração é igual para todos os cilindros, desde o canal 1 até o canal 4. Portanto, escolher em qual dos cilindros será realizado a calibração (F2=CAL1 até F5=CAL4).



8) Na Tela de CALIBRAÇÃO;



- 8.1) Selecionar o tipo de ferramenta, CONVERGENTE ou NÃO (DIVERGENTE)
- 8.2) Selecionar o tipo de cilindro, COM ELETRONICA INTEGRADA ou NÃO
- 8.3) Selecionar se a SERVOVÁLVULA está invertida ou NÃO
- 8.4) Inserir o valor da corrente da SERVOVÁLVULA (verificar qual modelo)
- 8.5) Inserir um valor de GANHO, por exemplo, 500.
- Para a opção de Calibração Automática, deve-se acionar a tecla AJUS e acompanhar o decorrer da calibração. Esta calibração ocorre da seguinte forma:
  - 9.1) Todos os eventos são mostrados passo a passo, no rodapé da página.
  - 9.2) O programador envia um sinal, para a servoválvula, no sentido de ABRIR a ferramenta
  - 9.3) Após um tempo pré-determinado, ocorre a memorização do sinal do DCDT, nesta posição.
  - 9.4) O programador envia um sinal, para a servoválvula, no sentido de FECHAR a ferramenta
  - 9.5) Após um tempo pré-determinado, ocorre a memorização do sinal do DCDT, nesta posição.
  - 9.6) O programador verifica os valores memorizados e finaliza o procedimento
- 10) Para a opção de Calibração Manual, deve-se acionar a tecla AJUS e proceder da seguinte forma:

10.1) Acionara a tecla ABRE e aguardar a movimentação do cilindro, no sentido de ABRIR a ferramenta. Caso o movimento ocorra no sentido de FECHAR a ferramenta, deve-se ligar a seletora INV.SERVO ou inverter os fios de comando da servoválvula.

10.2) Após o cilindro ter atingido a posição de ferramenta ABERTA, pressionar a tecla MEMO(F8), para a memorização do sinal do DCDT, nesta posição.

10.3) Acionara a tecla FECHA e aguardar a movimentação do cilindro, no sentido de FECHAR a ferramenta. Caso o movimento ocorra no sentido de ABRIR a ferramenta, deve-se ligar a seletora INV.SERVO ou inverter os fios de comando da servoválvula.

10.4) Após o cilindro ter atingido a posição de ferramenta FECHADA, pressionar a tecla MEMO(F4), para a memorização do sinal do DCDT, nesta posição.



- 11) deve-se acionar a tecla AJUS para sair do modo calibração
- 12) O ajuste de GANHO pode requerer otimizações que devem ser feitas de acordo com a velocidade de resposta do cilindro

# 6. ARQUIVO DE PROGRAMAS



- **NOME PROGRAMA** Campo Programável para inserir o Nome do Programa a ser Salvo, Carregado ou Apagado.
- **PROGRAMA ATUAL** Indica qual o Programa em utilização (Carregado).
  - **LINGUAGEM** Campo Programável para inserir o tipo de Linguagem (1=PORTUGUES, 2=ESPANOL, 3=INGLES)
    - **SALVA** Salva um novo programa (determinado no campo Nome Programa).
    - **CARREGA** Carrega o Programa existente na memória Ram (determinado no campo Nome Programa)
      - **APAGA** Apaga o Programa existente na memória Ram (determinado no campo Nome Programa)
        - **PROX** Link para Próxima Tela de Arquivo de Programas
        - MENU Link para Tela de Menu.



# 6.1 PROGRAMAS SALVOS 1, 2, 3, 4, e 5



- Nome Nome do Programa salvo (é possível salvar até 20 programas).
- **Dim.** Dimensão do Programa salvo.
- **Data** Data em que o Programa foi salvo.
- Hora Mora em que o Programa foi salvo.
- LISTAR Lista todos os Programa salvos.
  - **VOLT** Link para voltar a Tela anterior.
  - **PROX** Link para próxima Tela
  - MENU Link para Tela de Menu.



## 6.2 Procedimento para SALVAR um Programa

Após todo o sistema ter sido calibrado, perfil otimizado, etc..., um programa já pode ser salvo, para isso:

- 1. Posicione o cursor no campo NOME PROGRAMA e atribua um *Nome* a ele. Este nome pode ser numérico ou alfanumérico, em ambos os casos com 4 caracteres.
- 2. Assim que o nome for definido, pressione ENTER e logo em seguida o botão SALVA (Tecla F1).
- 3. Espere a mensagem de confirmação: "1321 PROGRAMA SALVO CORRETAMENTE".
- 4. Para visualizar a lista de programas salvos, pressione o botão PROX e em seguida LISTAR.

**Obs.:** Para inserir letras ao nome do arquivo, basta deixar ativa a tecla 2ndF (Second Function) e definir a letra através do teclado alfanumérico.

## 6.3 Procedimento para CARREGAR um Programa

Um programa contendo os valores de determinada calibração pode ser carregado, assim, eliminando a necessidade de reajustar seus componentes, para isso:

- 1. Entre com o nome do programa existente no campo NOME PROGRAMA e pressione o botão CARREGA.
- Espere a mensagem de confirmação: "1322 PROGRAMA CARREGADO CORRETAMENTE".
- Para visualizar a lista de programas salvos, pressione o botão PROX e em seguida LISTAR.

## 6.4 Procedimento para APAGAR um Programa

Um arquivo salvo pode ser apagado do controlador, por qual for o motivo tenha se tornado indesejado, para isso:

- 1. Entre com o nome do arquivo no campo NOME PROGRAMA e pressione o botão APAGA.
- 2. Espere a mensagem de confirmação: "1323 PROGRAMA APAGADO CORRETAMENTE".
- 3. Para visualizar a lista de programas salvos, pressione o botão PROX e em seguida LISTAR.



# 7. MONITOR DE SINAIS

## 7.1 Entradas Digitais

# ENTRADAS\_DIGITAIS\_\_M412\_\_\_\_ 1> 2>Aquecimento\_OK >< ||5>Pecas\_Rejeit. >< 3>Filtro\_Sujo >< ||7> 4>Incio\_Programa >< ||8> VOL: |PROX |NENU

- 1 Não Utilizado
- 2 Aquecimento OK > intertravamento com a temperatura de trabalho da máquina. Sem este sinal o programador não controla a ferramenta.
- 3 Filtro Sujo > indica que o elemento filtrante, do circuito hidráulico do programador, necessita ser substituído
- 4 Inicio de Programa > Indica que o programador foi iniciado
- 5 Pecas Rejeit. > para informar as peças rejeitadas para os dados de produção
- 6 Abre Parison > permite utilizar um botão externo para ABRIR a ferramenta
- 7 Não Utilizado
- 8 Não Utilizado

- **VOLT** Link para a Ultima Tela de Monitor de Sinais
- **PROX** Link para a Próxima Tela de Monitor de Sinais
- MENU Link para a Tela Principal.



## 7. MONITOR DE SINAIS

7.2 Saídas Digitais



- 1 Não Utilizado
- 2 Produção OK > indica que a quantidade de peças produzidas atingiu ou superou a quantidade programada
- 3 Seg.Cabecote > sinal de intertravamento para o circuito hidráulico (opcional)
- 4 Não Utilizado
- 5 Não Utilizado
- 6 Não Utilizado
- 7 Não Utilizado
- 8 Não Utilizado

- **VOLT** Link para a Tela Anterior
- **PROX** Link para a Próxima Tela
- MENU Link para a Tela Principal.



## 7. MONITOR DE SINAIS

## 7.3 Entradas/Saídas Analógicas (Servoatuadores 1 ao 4)



- Trans.Pos1 Valor em tensão do transdutor de Posição 1
- Trans.Pos2 Valor em tensão do transdutor de Posição 2
- Trans.Pos3 Valor em tensão do transdutor de Posição 3
- Trans.Pos4 Valor em tensão do transdutor de Posição 4
  - Servo 1 Sinal de Comando para a Servoválvula 1
  - Servo 2 Sinal de Comando para a Servoválvula 2
  - Servo 3 Sinal de Comando para a Servoválvula 3
  - Servo 4 Sinal de Comando para a Servoválvula 4

| VOLT | Link para a Tela Anterio | r |
|------|--------------------------|---|
|------|--------------------------|---|

- **PROX** Link para a Próxima Tela
- MENU Link para a Tela de Menu



# 8. <u>PRODUÇÃO</u>

## 8.1 Tempo de Ciclo e Contador de Ciclos

# ATUAL: XX, XXS XXXXXXXXIIIIII ANTER: XX, XXS RESET WORL 14202 101-00

- ATUAL Tempo de ciclo corrente (tempo de injeção + tempo de dosagem)
- ANTER. Último tempo de ciclo registrado (tempo de injeção + tempo de dosagem)
- CICLOS Quantidade de Ciclos Realizados

- **RESET** Reset do Contador de Ciclos Realizados
- VOLT Link para a Tela Anterior
- **PROX** Link para a Próxima Tela
- MENU Link para a Tela de Menu



# 8. PRODUÇÃO

## 8.2 Contador de Peças

#### NACOUIDADEC: VV NACOUIDADEC: V

N° CAVIDADES Campo programável para inserir a quantidade de cavidade por molde

QTDE. PEÇAS Informa a quantidade de peças produzidas

- **RESET** Reset do Contador de Peças produzidas
- VOLT Link para a Tela Anterior
- **PROX** Link para a Próxima Tela
- MENU Link para a Tela de Menu



# 8. <u>PRODUÇÃO</u>

## 8.3 Dados de Produção 1



| Peças por Hora         | Informa a previsão de peças por hora. Baseado no tempo de ciclo total e numero de cavidade do molde |
|------------------------|-----------------------------------------------------------------------------------------------------|
| Pecas a Produzir       | Campo programável para inserir a quantidade de peças que se deseja produzir.                        |
| Tempo Necessario       | Informa o tempo necessário para atingir a quantidade de peças desejadas                             |
| Produção<br>Completada | Indica que a produção desejada já foi atingida (aciona também uma saída digital)                    |

| VOLT Link para a Tela Anterior |
|--------------------------------|
|--------------------------------|

- **PROX** Link para a Próxima Tela
- MENU Link para a Tela de Menu



# 8. PRODUÇÃO

8.4 Dados de Produção 2



| Peças Boas             | Informa a quantidade de peças boas produzidas. Baseado na quantidade de peças total – a quantidade de peças rejeitadas (informada através de entrada digital). |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pecas Rejeitadas       | Informa a quantidade de rejeitadas (informada através de entrada digital).                                                                                     |
| Peças Faltantes        | Informa a quantidade de peças que ainda precisam ser produzidas.                                                                                               |
| Produção<br>Completada | Indica que a produção desejada já foi atingida (aciona também uma saída digital)                                                                               |

- **VOLT** Link para a Tela Anterior
- **PROX** Link para a Próxima Tela
- MENU Link para a Tela de Menu



## 9. PROGRAMA



**ESCALA** Campo Programável para inserir o valor de ESCALA desejado.

**PESO 1** Campo Programável para inserir o valor do PESO desejado.

- FECHA Quando pressionada, faz com que a ferramenta FECHE totalmente
- ABRE Quando pressionada, faz com que a ferramenta ABRA totalmente
- EDITA Link para a Tela de Edição do Perfil do Parison
- MENU Link para a Tela de Menu

10. EDIÇÃO DO PERFIL PARA EXTRUSÃO PROGRAMADOR 1, 2, 3 e 4



- PTO Indica o campo em que o cursor de edição se encontra
- XX% Indica a porcentagem de abertura no determinado ponto para a extrusão
  - 1°> Indica o primeiro ponto mestre do PERFIL DE PARISON
  - 2°> Indica o segundo ponto mestre do PERFIL DE PARISON
  - 3°> Indica o terceiro ponto mestre do PERFIL DE PARISON
  - 4°> Indica o quarto ponto mestre do PERFIL DE PARISON
- MEST Insere o ponto mostrado em PTO como mestre
- **CANC** Cancela o ponto inserido como mestre mostrado em PTO
- **INTER** Interpola o PERFIL editado a partir dos mestres inseridos
  - < Navega pelos 64 pontos no sentido da direita para a esquerda
  - > Navega pelos 64 pontos no sentido da esquerda para a direita
  - ↓ Decrementa o valor de edição em PTO
  - ↑ Incrementa o valor de edição em PTO
- **PRG1** Link para a Tela de PROGRAMADOR, no caso 1.







- **DELETE** Limpa Lista de Alarmes Registrados anteriormente (permitido somente para Nível Supervisor).
  - MENU Link para Tela Principal



# 12. INSTALAÇÃO



figure 3: disposition of the screws and dimensions.



figure 2: connection of serial line and power supply.

# MOOG

# 13. CONFIGURAÇÃO DO RACK



Posição 1 : Fonte de Alimentação >> Alimentação +24V DC +/- 15%

Posição 2 : CPU, comunicação serial , 220MHz

Posição 3 : Placa de Entradas e Saidas Analógicas :

Posição 4 : Placa de Entradas e Saidas Digitais :

4 entradas de -10 a +10V , resolução 16 bits 4 saídas de -50 a +50 mA, resolução 14 bits

8 entradas digitais, PNP

8 saídas digitais 0,5A



# 14. CONEXÕES ELÉTRICAS

MI220-405A001

M405 - Fonte de Alimentação.





IMI220-400D001

## M400 – CPU 21 MHz, comunicação serial





## IMI220-426A001

## M426 - 4 Entradas Analógicas + 4 Saídas Analógicas (Servoatuadores 1 ao 4)

- Transdutor Externo, do Tipo Potenciômetro DCDT, para medição do(s) curso(s) útil(eis) da(s) ferramenta





#### IMI220-412A001

## M412 – 8 Entradas Digitais + 8 Saídas Digitais (0,5A)

